
 1

DISCUSSION CONCLUDING AAS 13-518

DENNIS MCCARTHY was interested in ANDREW MAIN’s opinion that leap-second announce-

ments would arise via alternative means if the IERS stopped this service, because of continuing

demand for them. MCCARTHY asked MAIN “Who do you think would want to do that?” MAIN

replied that at least one person from the leap-second mailing list
*
 had already volunteered to pro-

vide this service—a person who insists that all of his clocks run on UT1 rather than UTC, alt-

hough MAIN was not convinced that his clocks really do this. But MAIN’s point was leap seconds

will arise if there is any serious application for which they are found useful. If one looks at the

history of UTC, there was an experimental “Stepped Atomic Time” (SAT) which was using 200

millisecond jumps. SAT was a good idea that was necessary to invent and from which the current

UTC definition originated—and “we did not need a top-down authority telling us that.”

JOHN SEAGO asked if MCCARTHY recalled a particular response of Mark Storz during the Ex-

ton Colloquium.
1
 Storz was responsible for systems that relied upon leap seconds, which might

fail if UT1 and UTC diverged. Storz contemplated that his organization might introduce its own

system of leap seconds if leap seconds were officially abolished, but eventually realized that such

an approach might cause compatibility issues because their systems are not self-contained and

must deal with outside data standards. JIM KIESSLING believed “the horse has left the barn;” as

long as the U.S. Naval Observatory and the IERS continue to publish Bulletin A “you can roll

your own” leap seconds. MCCARTHY agreed, clarifying that he was actually curious to know who

would continue using leap seconds if UTC was redefined without them, other than using it as a

workaround as SEAGO mentioned. MCCARTHY said that so far during the meeting, he observed

an impressive amount of time and effort working around the leap second.

ROB SEAMAN noted that the software issue is very much “Y2K-like”. And like Y2K, one can

either ‘fix it right’—whatever that means by whatever standards are of the future—or, one can do

what he expects will happen, which is “you will not be given enough money to ‘fix it right’ and

you will work around it in innumerable ways”, particularly within the thousands of systems with-

in astronomy. SEAMAN supposed that mountaintop observatories would deploy clocks that mimic

UTC as it currently exists in some fashion; they would not all adopt an explicit UT1 model but

will continue to use ‘UT’ as meaning a general equivalent to ‘GMT’.

MAIN brought out a related situation which he had not found discussed much. He noted that

there have been various proposals that would involve loosening the |UT1−UTC| bound for all

sorts of reasons, and there are certain users of UTC who would object to such loosening. So if

there were an attempt to loosen the bound, we could see a split between a “looser, canonical

UTC” versus some “service arising organically that provides a UTC-like time scale within the old

bound.” Yet there could also be a split the opposite way around: if UTC keeps its current defini-

tion, there are some users who would get so much benefit from a longer scheduling horizon that

* http://six.pairlist.net/mailman/listinfo/leapsecs

 2

one could imagine the organic production of a UTC-like time scale that has a looser |UT1−UTC|

bound.

RUSSELL REDMAN very much feared the proliferation of workarounds that imitate what UTC

does now, but with different assumptions. Once people start doing that, everyone will make dif-

ferent assumptions depending on their immediate problems to be solved, and only manage the

compatibility between different inputs later. This would become “an undiluted nightmare which

will take another decade to solve.” For such an intrinsically simple problem as this, it is far better

to have a central authority that does it right, and have everyone else using that. KIESSLING likened

this to a “rebellion growing up which discounts the ITU-R” redefinition.

If status-quo UTC is suppressed and an organic replacement comes about, MAIN thought “we

might see multiple versions; we might see schisms.” So any attempt to suppress UTC as currently

defined would actually multiply the number of time scales that use leap seconds. SEAMAN agreed

that “it would get more complex, not less complex.” REDMAN added “…and less reliable.” STEVE

MALYS said that the availability of time via GPS would make for more possibilities; UTC is al-

ready there because GPS already provides some realization of UTC. MAIN said that GPS regards

cæsium as the precise step, and one could build whatever one wanted on top of that.

SEAMAN had tried to recruit a database/SQL expert from the University of Arizona to speak at

this colloquium. By SEAMAN’s estimation, this expert had argued that the right way to normalize

a database is to have two sets of times: the time native to the thing being described, and the time

stamp of when it becomes valid. The expert’s argument was couched in terms of financial data-

bases and similar applications, but MAIN’s illustration of the leap-second table was a perfect ex-

ample that needed to be captured to make things even better. MAIN thought it would be slightly

difficult to normalize that into SQL because SQL does not support ranges of values as keys.

SEAMAN said that was the precise point of the expert, who was arguing for extending the Struc-

tured Query Language.

JOHN SEAGO wondered if the application programming interfaces (APIs) proposed by MAIN

would be used by programmers. Because of their lack of familiarity with various time scales, they

also lack familiarity with the additional complex inputs of the interfaces. MAIN said that this was

a tricky question which touched on a point that MAIN would present later on behalf of STEPHEN

COLEBOURNE. In the Java world, a different approach was taken for developing a time API. They

considered an approach similar to that discussed by MAIN but rejected it on the grounds that it

would be confusing. MAIN said that he therefore had two different answers for his two different

talks…

MAIN’s aim is really at skilled programmers. When writing real, substantive programs, one

need not be concerned about all the underlying details. SEAGO agreed that when programmers

call functions, they assume the experts behind the API are providing proper functionality. MAIN

continued that one is rarely going to seek to have time labels ‘unwrapped’; one only deals with a

raw time label if one is implementing a time-scale conversion; anywhere else one deals with a

time value in its ‘wrapped up’ form. Then the conversion operation is as simple as it could possi-

bly be; there, one is using a ‘wrapped up’ time value. It is vitally important that anything built on

top of that use the ‘wrapped up’ structures, otherwise we could end up with a profusion of bad

and confusing APIs. MAIN thought this is the way to make computers handle the details automat-

ically. And there is always the option of layering simpler APIs over the top of this to provide an

implementation that does not provide so many sharp corners.

REDMAN liked this kind of approach, as it especially is one of the places where encapsulation

is absolutely critical. An API is needed that is rich enough to do what true experts need, encapsu-

 3

lated within a general-purpose library with appropriate defaults that will do the correct thing for

the rest of the world. MAIN explained that is very much the intent behind the designs. Current

time APIs have not been developed by subject-matter experts; even when developed by pro-

gramming experts they have not captured the richness of time scales.
2, 3

 SEAMAN remarked that

programmers “may not use the APIs if they have them; they will not use them if they don’t have

them.” MAIN and REDMAN agreed. MAIN added that there is much more implementation work to

be done before these APIs can be used in earnest.

KIESSLING wondered about dealing with real-time issues, because there are very few real-time

operating systems for system control. MAIN replied that real-time systems are a specialist com-

munity that he has not looked into very much. MAIN had designed this API to be used in a very-

high-level language, which leads also to the possibility of analyzing a program to see which con-

versions it will need and then compile down to a program that has none of the flexibility of the

source language but can run in bounded time. KIESSLING said he watched an application which

accessed the processor clock and periodically looked at the number of cycles between different

calls and got around all of the other operating system issues; that “is the joy of going through un-

documented processor issues.” MAIN said that presently, and in the last decade particularly, cen-

tral processing units (CPUs) tend to provide direct access to a count of their own clock cycles,

and that results in a fairly quality clock that can be accessed extremely quickly—in one instruc-

tion perhaps; they are very convenient. Spacecraft take time readings directly from a local oscilla-

tor; these days this kind of access is built into the processor for some purposes. KIESSLING noted

that Windows
®
 and many of the other operating systems are just not suitable for real-time. MAIN

agreed that one needs an operating system specifically built for real-time work.

REFERENCES

1 Seago, J.H., R.L. Seaman, S.L. Allen (2011), Decoupling Civil Timekeeping from Earth Rotation—A Colloquium

Exploring Implications of Redefining UTC. American Astronautical Society Science and Technology Series, Vol. 113,

Univelt, Inc., San Diego. p. 231.

2 International Standards Organization (1990), International Standard ISO/IEC 9899:1990, Programming languages —

C.

3 Gosling, J., et al. (1996), Java API Documentation. Sun Microsystems, Inc.

